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ABSTRACT

The first part of this paper presents an algebraic
topological approach to finding all paths in a given
graph under various conditions. If a path with any
particular characteristics is desired, such as: mini-
mum distance, least cost, most reliable, etc., it can
be extracted from the list of all paths. In the second
part of the paper, a direct method for finding a mini-
mum path is given. Both techniques are straight-forward
and can easily be performed by a computer.
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INTRODUCTION

This paper treats two problems related to graphs (i.e. diagrams

consisting of nodes and branches). The first problem is to find all

of the paths in a graph, from any one node to another. The second

problem is to find the minimum length path in a graph, from one node

to another. The mathematical techniques involved are matrix algebra

and topology.

In the first part of the paper the general path finding problem

is handled. At first the theory is presented and the detailed ex-

amples are given. In the second part of the paper the minimum path

problem is handled. Similarly, the theory is presented at first and

then detailed examples are given. Detailed proofs of all theorems

are to be found in the appendix.
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PART I - GENERAL PATH FINDING

Topological Foundations:

This part presents a way of finding all paths from one point in a
graph to any other point. This technique is the elaboration of ideas
presented in 0-tasc*. Various restrictions can be placed upon the paths
so that they include certain branches and do not include certain other
branches.

Let us assume a graph to be given and hence its node-branch inci-
dence table. As an example:

1 4 1 2 3 4 5 6

A 1 1 0 0 0 1

2 5 B 1 0 1 1 0 0

C 0 1 1 0 1 0

6 D 0 0 0 1 1 1

Graph Incidence Table

Fig. 1

where a one in the ij positions means that node i is incident to branch
j and a zero means that it is not incident. For the details of such
topological concepts see V-AS. The following is a brief summary of the
1-dimensional incidence table and certain of its properties. Let us de-
note a branch or set of branches by its component vector expression.
Thus in the above figure the set of branches 1 and 3 would be denoted by
(101000), where the l's in the first and third positions mean that
branches 1 and 3 are present and the 0's in the second, fourth, fifth
and sixth positions mean that branches 2,4,5,6 are not present. Similarly
the set of nodes A and D are denoted by (1001). The boundary of a
branch is defined to be the nodes to which this branch is incident. The
boundary of branch 1 is written

6 (100000) - (1100) (1)

* The above abbreviations or acronyms have been found to be a very useful

way of referencing the literature. The acronyms are listed in alphabeti-
cal order in the reference section, with the full reference attached.
The part of the acronym before the hyphen represents the author and the
part after the hyphen the title. Capital letters following the hyphen
signifies a book, and small letters a journal article; if only the first
letter is capitalized, then this signifies an individually available report.
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where is the boundary operator. The co-boundary of a node is defined
to be the branches which are incident to this node. The co-boundary of
node A is written:

5 (1000) u (110001) (2)

where 5 is the co-boundary operator. Thus the rows and columns of the
incidence table correspond to the coboundaries of the nodes and boundaries
of the branches.

Let us define an additive operation between two binary component vec-
tors (aI, ... an)+(bl,...bn) , (cI ... Cn) in the following manner:

If i) aio, bi-o then c '=°

ii) ai=l, b.=o then c.=1

iii) ai.=o, b"=i then ci=l

iiii) ai.=l, bi=I then ci.o

this can be considered as a modulo 2 position-wise addition.

Let us define the boundary of a set of branches to be the sum of the
boundaries of each branch in the set. Let us define the coboundary of a set
of nodes to be the sum of the coboundaries of each node in the set.

Let us define a scalar multiplication of vectors by the scalars o and 1
as zero times a vector is the zero vector and 1 times a vector is the vector
itself.

It is then quite natural to view the incidence table as a matrix with
addition and multiplication between rows and columns as defined above. It
can be shown (see V-AS) that these rows form a vector space under the field
of integers modulo 2, whose rank is equal to the number of rows minus 1. It
can also be shown that the boundary and coboundary operations can be re-
placed by matrix multiplication involving the incidence matrix, as exempli-
fied in equations 3 and 4,

6(100000) = H • 0 1101100 0 1 (3)
1 0 011010 0(

110001

( L000 1[000j . H =[10001 . 011010
000111

Let us define two branches blb 2 to be coincident if bI and b2 are in-
cident to the same node at exactly one of their ends.
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Let us define a set of branches b ,...b n  to be a path from a node A
to a node B, if bI is incident to node A and bi is coincident with bi+I
(i=l,2...n-l), and bn is incident to node B. Any permutation of the
set of branches in a path will also be considered as a path.

Theorem 1: The boundary of a path b ,.. .b n from node A to node B is the

set of nodes A and B.

Proof: See Appendix.

Path Calculation

If a graph is given (i.e. its incidence matrix H) and there exists a
path p from node A to node B (let us denote the vectcr expression of these
two nodes as n) then

H • p = n (5)

Also, any path x from node A to node B must satisfy

H • x = n (6)

Thus the general problem of finding a path p from node A to node B is to
solve the above matrix equation for x.

The following theory presents a direct method for finding the general so-
lution to equation 6. If the number of rows in H is a then it is easily
shown (see V-AS) that the rank of H is U-1 and any one of the equations ob-
tained from (6) is linearly dependent on the rest and can be eliminated. Let
us call H' the matrix obtained by deleting one of the rows H and n' as
the column matrix obtained by deleting the corresponding entry in n. Then
(6) is equivalent to:

H'. x = n' (7)

Definition: A rectangular matrix of size r x s, where s > r, will be
called semi-diagonalized if its left r x r part is a unit matrix and its
right r x (s-r) part is an arbitrary matrix of zero's and one's denoted by
H.

1
1CC

H

1

r s-r
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Theorem 2: The matrix H' can be brought into semi-diagonalized form
by using the following two operations:

I The addition of one row to another

II The interchange of two columns

Proof: See Appendix

Theorem 3: If H* is the semi-diagonalized form of H' and x* is ob-
tained from x by the corresponding operations of (II) and n* is obtained
from n' by the corresponding operations of (I) then the solutions to the
matrix equation

H*. x* = n* (8)

are equivalent to equation (7),

Proof: See Appendix

The rest of the calculation will be developed by the use of matrices
directly.

IAt:

H* H (9)
ic

1'

r s-r* =IxI x Ix* ffi 1 I  " " x"s*]

n* = in*. nr*] 9 (10)

(The matrix notation [ ] means transpose)
From Equation (8) 7

X

1'

H H*

L n r
X*

_
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which is equivalent to

KX x n:~Lc1L:i K (12)r L 's * _L s* ] n r* _

It then follows that

= + H 'r" (13)

due tc the modulo 2 properties of these matrices. If (Xr+l*, ... xs)
is allowed to vary through all binary (s-r)-tuples from (0,0,.. .0) to
(1,1,...I) then all solutions for x are obtained. The solution can be
brought into a more elegant form by enlarging both sides in the following
manner:

X n*

* H* Xr+l*
H* x

r rr
I x . . . . . .. . .(14)

+ - - (14Xr+ 1  0 1

X*

If both sides are re-ordered by the appropriate interchange of rows and
columns on both sides of the equation so as to obtain x in its original
order on the left-hand side, then

x = y + H x' (15)c

where y is a particular solution for x, and depends only upon the n
columns of H' which were used in the semi-diagonalization (which corres-
pond to a tree of the graph); Hc depends only on the semi-diagonalized
Hc' ; x' is a subset of the x and corresponds to the choice of co-tree
(complement of a tree, or the s-r columns not in the semi-diagonalized
part of H *).C
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The total number of solutions for x can easily be obtained. These
solutions were found by allowing (xr+]*.*x8*) to vary through all s-r
tuples of binary numbers. Hence there are 2 (s'r) solutions for x. If
we let n be the number of nodes in the graph, b be the number of branches
in the graph, then r - n-l and s - b. Hence the number of solutions K
is:

K - 2 (b-n+l) (16)

Excessive Solutions:

In the previous section we showed how to solve the system of equa-
tions in (6). In addition, we showed that any desired path will satisfy
(6) and hence be included in the general solutions. It has not been shown
that any element of the general solution will be a desired path. This
section will serve to clarify this last point.

Let us define a loop as a set of three or more branches b ,... b such
that b. is coincident to b. ,=l,2,...n and b is coincidint to b,
where no subset of the b. satisfy the same condition. A set of two branches
both of whose ends are tie same will also be called a loop. Any branches
both of whose ends are the same will also be called a loop. Any permuta-
tion of a set of branches which form a loop will be considered a loop.

Theorem 4: If b is a set of branches then the equation

H . b = 0 (17)

is satisfied if and only if b is a loop or a set of loops.

Proof: See Appendix

Definition: If two vectors of zero's and one's

a =(a, ... an ) 1 n (13)
b = (b1,...b n )

are given, where a 0 b and if a. = 1 implies that b. 1, then a will
be said to be included in b, written a C b. 1

The following theorem completely cla .ifies the solutions to equation
(6).

Theorem 5: If b is a set of branches and n is a set of two distinct nodes
A and B, then

H . b = n (19)

if and only if either b is a path from A to B or b is the sum of a path
k from A to B and loops l,... 2r where k cb, 1I c b, ... e r c b.

Proof: See Appendix



TM-3421 8

Thus the solutions to equation (6) are of two kinds; the paths
which were required, and the paths plus excessive loops. Once all the
solutions have been found, there are several ways of eliminating those
solutions which contain excessive loops (excessive solutions).

The first method is based upon the partial ordering induced upon
the solutions by the above defined inclusion relation.

Theorem 6: If a set of branches b which is a solution to equation (6)
contains loops I1,.. .n, A1 cb,...I ncb then there exists a path p
such that p is also a solution of equation (10) and p cb.

Proof: See Appendix

Thus the method for eliminating excessive solutions is as follows:
find all of the solutions, then all solutions b such that there exist
smaller solutions p (i.e. pcb) are excessive solutions and should be
eliminated.

A second method to eliminate excessive solutions is by rank considera-
tions and can be found in O-tasc 276-9.

Routes Under Specified Conditions:

In general it is possible to specify that certain branches should
be included in the path and that certain other branches should not be in-
cluded. In the original formulation H.x - n the components of x were
all assumed to be unknown. Let us now assume that x will be partially
specified. Simply set equal to zero those branches which should not be
included and set equal to one those branches which should be included. If
it is desirable, the general solution of equation (6) can first be found
and then these conditions can be used as constraints.

Examples:

Some illustrative examples will help to clarify many of these ideas.
Figure 2 is an imaginary telephone communication network. The matrices in
Figure 3 are then obtained.
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I 2 3 4 5 6 7 8 9 10 II 12 13 14
CHICAGO A I I I I I
BOSTON B I I I
WASHINGTON C I I I INCIDENCE
ALASKA D I I MATRIX
SAN FRAN. E I I I
COL. SP. I F I H
GREEN. G
NEW YORK H I I
C.C. I I I
LOS ANGLES J I
COL. SP.2 K I I

I 2 3 4 5 6 7 8 9 10 II 12 13 14

a I I I
C II REDUCED
o I I INCIDENCE
E I I I MATRIX
F IH'
0 I (A-REMOVED)
H II
II I
II

K II

I 2 3 4 5 6 7 9 12 13 8 10 11 14
B+G+H I I I
C+ I I I
o I I I SEMI -DIAGONALIZED
E+J I I MATRIX
F IH
G I

H I
I+K I I

m J I I

0- K I I
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Prob lem 1

Let us find all paths from Alaska to New York. This is the same as
finding the general solution to

H.x- 00010001000] (23)

it then follows that

H.x* - 11010001000] (24)

where

x* (Xl,x2 ,x3 ,x4 ,x5,x6,x7 ,9x9 ,x,12 x13,x8 ,x10 ,x illx 14 ) (25)

and

1I 1010

0 1001

1 0110

0 0101

0 0000

0 0010 8

X 1 + 1000 , 1 (26)

0 1000 Xll1

0 0001 xI4

0 0100

0 0010

0 0001

0 0001

0 0001

The solutions are easily found by substituting all binary values for
(x8 l 0,x llX 14)
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BRANCHES

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1

2 1 1 1

31 1 1 1

4 1 1 1 1

5 1 1 1

61 1 1 1

7 11 11 1 1 x

8 1 1 1 1 1 1 1 1 x

o 9 1 1 1 1 1 1 1 1 1 x

10 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1

12 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 x

14 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1 1 x

16 1 1 1 1 1 1 1 1 1 1 x

The solutions marked with an x mean those with excessive loops. The

sixteen diagrams on pages 19 to 22 give the actual sixteen paths.

Problem 2

In this problem let us assume that in Figure 1 Chicago has been des-

troyed and that we wish to find all paths from Alaska to New York. One

way to find the solution would be to start from the beginning and define

a new incidence matrix with Chicago removed. However, a much shorter me-

thod is possible starting from the solution to Problem 1 in Equation 26.

The above condition can be specified by forcing:

(XlX 2 ,X3,x4,X5) = (0,0,0,0,0) (20)

in Equation 25. This gives

0 1 l0

0 0 1001

0 1 + 0110 x10  (29)

0 0 0101 xll

0 0 0000
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an independent sub-set of these equations isKj 1010 [ 8
0 1001 X 10 (30)

0110 _ X 1

and the solution is easily found as

SH1 x 8] (31)

If this is substituted in Equation 26 we obtain the following two solu-
tions:

1. P1 = x l

(32)
2. P2 =x8'x9'xlo'Xl2'Xl3'xl4

Problem 3

Let us find all paths from Alaska to New York which pass x8 and do
not pass x Again we can start from Equation 26. From Equation 26 we
obtain

x8

+~ 10j x 10
x 14

The solution is easily found

110 x~ 11(34)

* 1] 010 xi 14
*1 001

If this is substituted in Equation 26 we obtain the following four solu-
t ions:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1 1 1 (35)

41 1 1 11 1 1 1 1

Part II - Determining Minimum Paths

In the study of networks the problem of determining the shortest path (in
the network) joining two given points, arises. This problem may be generalized
to determining the least cost paths connecting two given points. If a non-
negative number s assigned to each branch of a network, then to each path in
the network a number called its cost, may be assigned. This number is the sum
of the numbers assigned to the branches comprising the path. Various algorithms
exist for finding the least cost paths connecting two points of a network
( B-T-I, Ch .7, L-ai] M-SPTM ,Vol. 2). We shall present a matrix method which
is applicable to both directed and undirected networks. In the main body of
this paper we shall formulate the method for undirected networks, and in an ap-
pendix, the method will be formulated in general.

Let N be a network with a finite number of branches and vertices ( nodes).
We say that two points of N are joined by a branch if these points are the end
points of the branch. We shall assume that no point of N is joined to itself
by a branch. By a cost function on N we mean a function f that assigns to each
pair of vertices in N, either a non-negative real number or the indeterminate
quantity -. Furthermore f obeys the conditions

(1) f(v,v) = o for all vertices v

(2) f(v,w) = f(w,v) for all vertices v,w

(This condition will be dropped later).

(3) If v#w then f(v,w)is a non-negative real number if v,w are
joined by a branch of N.

(4) If v A w then f(v,w) = - if there is no branch joining v to w.

The indeterminate quantity - obeys the conditions:

(1) c + r = o for any real number r.

(2) w + c= =

(3) V > r for any real number r.

Let the vertices of N be V, . .2 v . Then with N we associate the
symmetric matrix n
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f(vv l ) .. .. f(vl)vn )

f(V nVd)...... fv ,Vn)

Let us consider an example of a network and a cost function on that network.

5

1 V2  v

1 5 V 5

2

1

The matrix associated with this network and cost function is:

VI V2 V 3 V 4 V 5 V6

V 1 0 1 Go 5 1

V2  1 0 5 0 W

V3  00 5 0 2 4

V4  5 O 2 0 5 2

V5  O W 4 5 0 9

V6  1 C C 2 9 0

This matrix not only tells us what cost is assigned to each branch, but in
addition tells us what vertices are joined by branches. For instance, we
know v I and v5 are not joined by a branch since the (1,5) entry is -.
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This follows from conditions 2 and 3 for cost functions.

We shall now define a binary composition on matrices whose entries are
real numbers or the indeterminate m.

Definition:

a 1l. • .aIn bI . . .bn C ll* c n

. .. a b .. b c c
nn n1 nn nl* nn

where cij = Min (aii + b1 j, a 2 + b2j ........ ain + b)nj

Definition: Let A be a marix whose entries are either real numbers
or the indeterminate -. Then A( I = A, A( 2 ) A * A A( A()* A . . .
An 

= A(n-l) * A.

Lemma 1: Given matrices A,B,C

A*(B*C) - (A*B)*C

Lemma 2: Given matrix A,

A ( k ) * A ( k') - A(k+k)

Again let A be the matrix associated with a given network N and let
f be a cost function on N. We shall see that the entries of A (n -l), where n
is the number of vertices, are the minimum oats of geting from one vertex
to another. Consider the matrix A*A - A(2). Let a be the i,Jth entry
in A(2). Then (2) is Min(a +a-, a. i .)where i entr

aij il 1J 2+&2j' "" ainanj aij-f(vi'vj) "

The cost of a leask2_ost path between v ,v consisting of no more than 2 branches
is thus given by aj '. Similarly the f llwlng theorem can be shown.

Theorem 7. Let a(k) be the ijth entry of A k). Then aik) is the least cost
entailed by any pah of < k branches, joining vi to vj

Now sin e a least cost path has no loop in it, it suffices to consider the
matrix A(n-15 to determine the least cost to get from one point to another.
Clearly, any path having n branches or more, must have a loop so our assertion
follows from Theorem 7, and condition 3 for a cost function.

Theorem 8: If k'<k, then each entry of A (k) is greater than or equal to the
corresponding entry of A(k').
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Thus for k>n-1, A(k)=A(n 1) Let us now consider the network and
cost funct-ion we gave as -an example (See Fig. 1). Let A be their s-
ciate matrix. A is a 6 x 6 matrix so it suffices to consider A(1 -

But Lemma 2 give us simpler,^ay of getting A(5 . Notice A 8) A(4 ) *

A(4 ), AC4 ) = A(2)*AC2), and A (-A*A. By the above remark A()=A(5 , so
we need 3 compositions instead of 4. Here are the compositions done in
detail:

_ (2)

0 1 - 5 1 1 0 1 7 3 10 1

1 0 5 coo oo 1 0 5 6 9 2

W 5 0 2 4 w 6 5 0 2 4 4 f 2 2 )

5 w 2 0 5 2 3 6 2 0 5 2

00 00 4 5 0 9 10 9 4 5 0 7

1 co oo 2 9 0 1 2 4 2 7 0

(2)

0 1 6 3 10 1 0 1 5 3 8 1

1 0 5 6 9 2 1 0 5 4 9 2

6 5 0 2 4 4 5 5 0 2 4 4 A (4 )

3 6 2 0 5 2 3 4 2 0 5 2

10 9 4 5 0 7 8 9 4 5 0 7

1 2 4 2 7 0 1 2 4 2 7 0

- (2)
0 1 5 3 8 1 0 1 5 3 8 1

1 0 5 4 9 2 1 0 5 4 9 2

5 5 0 2 44 =5 5 0 2 4 4 A ( 8 ) A ( 5 )

3 4 2 0 5 2 3 4 2 0 5 2

8 9 4 5 0 7 8 9 4 5 0 7

1 2 4 2 7 0 1 2 4 2 7 0

Suppose we wish to find a minimum cost path from vI to v.. The 1,5
entry of A(5) is 8 so there exists a path of cost 8 and this cost is
minimum. Now it is clear that if there is a vertex v such that the l,j
entry plus the j,5 entry is 8, that v must lie on sole minimum cost path.
Consider v for instance. The 1,4 entry is 3 and the 4,5 entry is 5.
Thus, v4  ties on a minimum path. That portion of a minimum path connect-
ing v1 to v which is bounded by v1 and v4 must itself be minimum cost.
Similarly for 9he portion between v and v . By repeating the above steps
we find that v 1v6v4v5 is a minimum ost pah from v to v and, moreover,
it is the only one. In general, though, minimum cost paths are not unique.
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If we assign a unit coat to each branch of a network, then the algorithm
just described will yield minimum length paths. This method differs
from other algorithms in that the two points between which a path is to
be found need not be selected in advance,
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APPENDIX

This appendix contains detailed proofs of all the thecrems in the text.

Theorem 1: The boundary of a path bl,..b from node A to node B is the
set of nodes A and B. 1

Proof: Let us calculate the boundary by adding the boundaries of each branch
b V Notice that b and b +.(i-l,2,...n-l) are coincident and hence these
intermediate nodes ancel oul Ay the modulo 2 addition, leaving nodes A and
B as the sum.

Theorem 2: The matrix H' (an n x m matrix) can be brought into semi-
diagonalized form by using the following two operations:

I. The addition of one row tc another

II. The interchange of two columns

Proof: In the first row there is at least one non-zero entry due to the in-
dependence of the rows. This can be brought to the 11 position by II. Then
the entries 21,31, ... nl can be made zero by the appropriate addition of the
first row to the second, third, ... nth rows. Ccntinuing this with the second
row and so on, all non-zero entries below the diagonal are made zero. Then starting
with the last row reverse the process and eliminate all non-zero entries above the
diagonal.

Theorem 3: If H* is the semi-diagonalized form of H' and x* is obtained
from x by the corresponding operations of II and n* is obtained from n' by
the corresponding operations of I, then the solutions to the matrix equation

8* . =n*

are equivalent to those obtained from Equation 7.

Proof: Let us express the matrix Equation 7 in the form of a system of simul-
taneous equations and analyze the effects of operations I and II on this
system:

x' +..+ h' x =n

h'nXl + ... + h' x = n'
1M m n

h'nllX1+..+h nm xm n

The uses of II transform this system to

h X +h' x +h' x +..+hl z-n'lll ..+ i(i+l)Xi+li li~i. i IM m n 1

h' nXI+. .+h xi+l +h' niXi+...+h' x -n'

I-1
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The above is an instance of one application of II, but in general the
solutions remain the same. Let us assume an instance of one application
of I, where the ith row has been added to the Jth row. Then all rows
remain the same except for the Jth row which becomes:

(h'+h.)x+... +(h +h )x -n' +n'
il l i 1m j m m i j

Let us show that the solutions to the old system and those of the new sys-
tem are identical. Assume (bt,. .b) to be a solution of the old system,
then in the new system all rows other than the Jth are obviously satis-
fied. The Jth row becomes

(h' t+h' j)b1+ ... +(h'im h' )bm-

(h'ilbI+ ... h'imbm)+(hj b1+ ... h' mbm)

n i'+n'

due to the solution satisfying the old system, and hence it satisfies the
new system. Now assume that (b1 .... b ) satisfies the new system, then
all rows of the old system other than tle jth are obviously satisfied.
The ith row and jth row of the new system are

h' b+ +h' b Mnill imbm i

(h' i+h'j )b1+ ... +(h' im+h' jm)bm n' i+n'

Take the sum modulo 2 of these two equations and we get

h' b + . +h' b = n'
Jl " Jm m j

and hence the jth row of the old system is also satisfied. This completes
the proof.

Theorem 4: If b is a set of branches, then the equation

H b -o

is satisfied if and only if b is a loop or a set of loops.

Proof: If b is a loop or a set of loops, then in each loop the boundary
operation determines each node (that successive branches are coincident at)
twice, hence all these nodes cancel modulo 2 and the boundary is zero.

1-2
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Assume that a set of branches has a zero boundary. Choose one branch
and at one end there must be at least one other branch coincident or the
boundary could not be zero. The same holds for the second branch and so
on, since this cannot go indefinitely we must finally return to the first
branch, hence we have a loop. If this does not exhaust all the branches
then repeat the process with one of the remaining branches and at most
we have a set of loops.

Theorem 5

If b is a set of branches and n is a set of two distinct nodes
A and B then

H • b =n

if and only if either b is a path from A to B or b is the sum of a
path k from A to B and loops il .... Ir where kc:b, 1 cb,.. .2 c b.

Proof:

If b is a path from A to B then H.b =n. If b is the sum of a path
k and loops 1,... Ir then

b - k + 1i +  
' + ir

and H b -H.(k+i1+ .., +i r H k+H.11+ ... +H.1r

= n +o + ... + o = n

Let us assume that H-b = n. At least one branch is incident to A, at
its other end it is either incident to B or coincident to some other branch
(or else this node would be included in the boundary). Continuing this pro-
cess, some branch will be incident to B. If no more branches remain in b
then we have a path from A to B. If some branches remain we choose one
of them and it must be coincident to at least one other branch at one of its
ends, and so on we find that the remainder constitutes a loop or a set of
loops.

Theorem 6

If A set of branches b which is a solution to Equation (6 ) contains
loops £i,... , where I cb, I.cAb, then there exists a path p such that

n I ' nit is also a solution to Equation (6 ) and pcb.

Proof:

Assume that a set of branches b which is a solution to Equation (6 )
contains loops i... n' where 2Icb,. Incb. Choose

p = b + +  
n

1-3
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Then pcb since 1cb,... ncb and also

H*P - H. (b+j + ... +1n )H. b+1 1 +...+H.j n

- H-b+o+ ... +o - H'b - n

hence p is a path.

lAua 1:

If A, B, C are matrices whose entries are real numbers or the indeter-
minate w then A*(B*C) = (A*B)*C.

Proof:

Let A [i i,j - i ... n

B- -i~j i,j -1 ... n
C - [c ii i~j - 1 ... n

M - B*C - i i,j - 1 ... n

L - (A*B)- t i ij - 1 ...,n

Then A*(B*C) = A*M = (ija1 * pi Cr,.j

Where r ij = Min faik+'kJ" (A*B)xC = L*C

r(ij *cii} =[r3, where r j - Minf k + c kj

But 4 - Min bkk,+Ck,j , therefore
kj k' I

r j Min (a k+ ±k] Min a k +Min ~b k+Ck]Jr k ( j k 1" i k' kk'+ k' "

For some ko, r j 'a k 0 + and for some 4o, koJ = bko 0k' +Ck' j.

Therefore, rlj a ko + bk k' + ci'oJ (aik 0 0 0

0 0
However, (aik + bk k' 0 %ik' and 4k'0 + ck 'o > I- rij therefore

r j >_ r ij. By reversing the proof we can show r i>r j hence r j = r j

which proves the theorem.

Lemma 2:

A(k) * A(A). A(k+)
•

We first show that A*A(k). A(k)*A = A(k+l). For k - I, it is true.
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Suppose for k=k' , A*A (0)=A (,)*A=A (10+), then A*(A (k+)=A*(Ak *A) by

definition. By Lemma 1, A*(Ak'*A)=(A*A( ) *A- A(l t +I)*A. Thi ndcd ion
proves the first assertion. Now A(k)*A ) A( l)*(A*A(1-'))A *A . Ccn-
tinuing this rearrangement we get A(k)*A(l)-A(k+£'I)*A(1)-A ( k + X) ,

Q.E.D.

Theorem 7.

Let A be the matrix associated with the network N and the cost(It ) (10)
function f. Let a.. be the ij entry of A . Then a.. is the

Ij 3j
least cost entailed by any path consisting of <k branches joining v. to- 1

vj.

Proof:

Let % i(h) be the least cost entailed by any path consisting of <hij

branches and joining v. to v . It is clear that X. . ( )= a.., where a j

is the i,j entry of A, for there is but one path joining vi to v
having <1 branch. Either it is the path having no branches, in whicA case

iJ ( a- or it is the path consisting of the branch (vi v) in which

case X (1) =f(v.,v ). Let A be the matrix associated with the network N
ij if

and the cost function f. Let aij (1) be the iJ entry of A(Ic)make induction
assumption, etc.. Let x (k) be the cost entailed by the cheapest path from
vi, to vj having <k bganches. Let p be such a path. Either p consists

of just the branch (v v,) or there is a point vh on p intermediate to vi
adv (it) . (k-1)+and vaij Min ( ai l)+a by assumption k>l. Hence for -J ajjk +

a. is the cost of a cheapest path from vi  to v. with <k-I branches
aij (k). X (k). Now suppose for all integers h such that l<h<k, we have

(h) . i(h) (h) i (h ) .  (k)Xij i where a ij is the i,j entry in Ah. Consider X
There is a path p connecting v. to v. and having <k branches such that

>..(k)is the cost of p. We assume p gas at least one branch. There are

two cases to consider:

Case I:

p consists of the branch joining v. to v Then X (k)= . (k-l)

=(k- (k-1)~ (a- ) hJ (1- 1) ij ~
If for some h # j, we have ij k)ha (kl)+a then we may conclude there

ij ih hjt
is a path of <k-1 links going from v. to vh and then going to vj by

I-5
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(k)one more branch whose cost is less than X iJ This contradicts the mini
mality of the cost of p.

Case 2:

There is a third point v intermediate to v and vj through
which p passes. Let t be vhe number of branches on that part of p

connecting v to v . Then we see that X i(k) . % (t)+ (k-t).

ah (t)+a (k'ia> (k. Again as on Case l(,if X,.bIa (k ) there exists

h jsuch t at X i a (t+h(k-t) . Xi(t)+hJ (fIt)>,-ki(k)
ij ih 8 h ih ahj ij

Q.E.D.

Theorem 3':

If 14>k' then the i,j entry of A(k)< the ij entry of A(kl)

for all i,j.

Proof:

The i,j entry of A (W) is X (kl) by the previous theorem. If we
consider longer paths (consisting of more branches) connecting vi, vj, we
may come up with a cheaper path, in which case X k)<x, (k or we may

not, in which case Xi j  (k )  j (k') j kj

Q.E.D.

In view of lemma 2 and theorem 2, if we are dealing with a network of

n nodes, the most matrix compositions we need to do, in order to detemine

all minimum costs between nodes, is log n+l The 1proced re for getting A (n-i)

is to perform the "doublings" A A , .A 2 2  An.a(nl).

Once we have A(n-l) we can easily determine a minimum cost path con-

necting vi,v.. If A i(n-l). . there are no paths connecting v v . If

aij (n"), - then look for a node vh such that hl#j, hj~i ahlJ (n'l)<
j (n-l) h (nl) (n-l) (n-) n s

ahj for all hJ and for which aih + ah+ % aij If no such

node exists then the branch connecting vi  to v is already a minimum cost
path. If vh does exist then there is a branch of the network N connect-

ing vh to vj. In that case we repeat the procedure to find a minimum cost

path connecting vi to vhl, etc..

Illustrations: . 'D. M. Lis
Page 9 - DWg. 1B-10,027

10 - " A-10,026
19 - " 1D10,028 S. Okada
20 - " 1D-10,029
21 - " 1D-1O,030
22 - " 1D-10,031 1-6 S. Koiker"
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